a.heateor_sss_amp{padding:0 4px;}div.heateor_sss_horizontal_sharing a amp-img{display:inline-block;}.heateor_sss_amp_gab img{background-color:#25CC80}.heateor_sss_amp_parler img{background-color:#892E5E}.heateor_sss_amp_gettr img{background-color:#E50000}.heateor_sss_amp_instagram img{background-color:#624E47}.heateor_sss_amp_yummly img{background-color:#E16120}.heateor_sss_amp_youtube img{background-color:#ff0000}.heateor_sss_amp_teams img{background-color:#5059c9}.heateor_sss_amp_google_translate img{background-color:#528ff5}.heateor_sss_amp_x img{background-color:#2a2a2a}.heateor_sss_amp_rutube img{background-color:#14191f}.heateor_sss_amp_buffer img{background-color:#000}.heateor_sss_amp_delicious img{background-color:#53BEEE}.heateor_sss_amp_rss img{background-color:#e3702d}.heateor_sss_amp_facebook img{background-color:#0765FE}.heateor_sss_amp_digg img{background-color:#006094}.heateor_sss_amp_email img{background-color:#649A3F}.heateor_sss_amp_float_it img{background-color:#53BEEE}.heateor_sss_amp_linkedin img{background-color:#0077B5}.heateor_sss_amp_pinterest img{background-color:#CC2329}.heateor_sss_amp_print img{background-color:#FD6500}.heateor_sss_amp_reddit img{background-color:#FF5700}.heateor_sss_amp_mastodon img{background-color:#6364FF}.heateor_sss_amp_stocktwits img{background-color: #40576F}.heateor_sss_amp_mewe img{background-color:#007da1}.heateor_sss_amp_mix img{background-color:#ff8226}.heateor_sss_amp_tumblr img{background-color:#29435D}.heateor_sss_amp_twitter img{background-color:#55acee}.heateor_sss_amp_vkontakte img{background-color:#0077FF}.heateor_sss_amp_yahoo img{background-color:#8F03CC}.heateor_sss_amp_xing img{background-color:#00797D}.heateor_sss_amp_instagram img{background-color:#527FA4}.heateor_sss_amp_whatsapp img{background-color:#55EB4C}.heateor_sss_amp_aim img{background-color: #10ff00}.heateor_sss_amp_amazon_wish_list img{background-color: #ffe000}.heateor_sss_amp_aol_mail img{background-color: #2A2A2A}.heateor_sss_amp_app_net img{background-color: #5D5D5D}.heateor_sss_amp_balatarin img{background-color: #fff}.heateor_sss_amp_bibsonomy img{background-color: #000}.heateor_sss_amp_bitty_browser img{background-color: #EFEFEF}.heateor_sss_amp_blinklist img{background-color: #3D3C3B}.heateor_sss_amp_blogger_post img{background-color: #FDA352}.heateor_sss_amp_blogmarks img{background-color: #535353}.heateor_sss_amp_bookmarks_fr img{background-color: #E8EAD4}.heateor_sss_amp_box_net img{background-color: #1A74B0}.heateor_sss_amp_buddymarks img{background-color: #ffd400}.heateor_sss_amp_care2_news img{background-color: #6EB43F}.heateor_sss_amp_comment img{background-color: #444}.heateor_sss_amp_diary_ru img{background-color: #E8D8C6}.heateor_sss_amp_diaspora img{background-color: #2E3436}.heateor_sss_amp_dihitt img{background-color: #FF6300}.heateor_sss_amp_diigo img{background-color: #4A8BCA}.heateor_sss_amp_douban img{background-color: #497700}.heateor_sss_amp_draugiem img{background-color: #ffad66}.heateor_sss_amp_evernote img{background-color: #8BE056}.heateor_sss_amp_facebook_messenger img{background-color: #0084FF}.heateor_sss_amp_fark img{background-color: #555}.heateor_sss_amp_fintel img{background-color: #087515}.heateor_sss_amp_flipboard img{background-color: #CC0000}.heateor_sss_amp_folkd img{background-color: #0F70B2}.heateor_sss_amp_google_news img{background-color: #4285F4}.heateor_sss_amp_google_classroom img{background-color: #FFC112}.heateor_sss_amp_google_gmail img{background-color: #E5E5E5}.heateor_sss_amp_hacker_news img{background-color: #F60}.heateor_sss_amp_hatena img{background-color: #00A6DB}.heateor_sss_amp_instapaper img{background-color: #EDEDED}.heateor_sss_amp_jamespot img{background-color: #FF9E2C}.heateor_sss_amp_kakao img{background-color: #FCB700}.heateor_sss_amp_kik img{background-color: #2A2A2A}.heateor_sss_amp_kindle_it img{background-color: #2A2A2A}.heateor_sss_amp_known img{background-color: #fff101}.heateor_sss_amp_line img{background-color: #00C300}.heateor_sss_amp_livejournal img{background-color: #EDEDED}.heateor_sss_amp_mail_ru img{background-color: #356FAC}.heateor_sss_amp_mendeley img{background-color: #A70805}.heateor_sss_amp_meneame img{background-color: #FF7D12}.heateor_sss_amp_mixi img{background-color: #EDEDED}.heateor_sss_amp_myspace img{background-color: #2A2A2A}.heateor_sss_amp_netlog img{background-color: #2A2A2A}.heateor_sss_amp_netvouz img{background-color: #c0ff00}.heateor_sss_amp_newsvine img{background-color: #055D00}.heateor_sss_amp_nujij img{background-color: #D40000}.heateor_sss_amp_odnoklassniki img{background-color: #F2720C}.heateor_sss_amp_oknotizie img{background-color: #fdff88}.heateor_sss_amp_outlook_com img{background-color: #0072C6}.heateor_sss_amp_papaly img{background-color: #3AC0F6}.heateor_sss_amp_pinboard img{background-color: #1341DE}.heateor_sss_amp_plurk img{background-color: #CF682F}.heateor_sss_amp_pocket img{background-color: #ee4056}.heateor_sss_amp_polyvore img{background-color: #2A2A2A}.heateor_sss_amp_printfriendly img{background-color: #61D1D5}.heateor_sss_amp_protopage_bookmarks img{background-color: #413FFF}.heateor_sss_amp_pusha img{background-color: #0072B8}.heateor_sss_amp_qzone img{background-color: #2B82D9}.heateor_sss_amp_refind img{background-color: #1492ef}.heateor_sss_amp_rediff_mypage img{background-color: #D20000}.heateor_sss_amp_renren img{background-color: #005EAC}.heateor_sss_amp_segnalo img{background-color: #fdff88}.heateor_sss_amp_sina_weibo img{background-color: #ff0}.heateor_sss_amp_sitejot img{background-color: #ffc800}.heateor_sss_amp_skype img{background-color: #00AFF0}.heateor_sss_amp_sms img{background-color: #6ebe45}.heateor_sss_amp_slashdot img{background-color: #004242}.heateor_sss_amp_stumpedia img{background-color: #EDEDED}.heateor_sss_amp_svejo img{background-color: #fa7aa3}.heateor_sss_amp_symbaloo_feeds img{background-color: #6DA8F7}.heateor_sss_amp_telegram img{background-color: #3DA5f1}.heateor_sss_amp_trello img{background-color: #1189CE}.heateor_sss_amp_tuenti img{background-color: #0075C9}.heateor_sss_amp_twiddla img{background-color: #EDEDED}.heateor_sss_amp_typepad_post img{background-color: #2A2A2A}.heateor_sss_amp_viadeo img{background-color: #2A2A2A}.heateor_sss_amp_viber img{background-color: #8B628F}.heateor_sss_amp_webnews img{background-color: #CC2512}.heateor_sss_amp_wordpress img{background-color: #464646}.heateor_sss_amp_wykop img{background-color: #367DA9}.heateor_sss_amp_yahoo_mail img{background-color: #400090}.heateor_sss_amp_yahoo_messenger img{background-color: #400090}.heateor_sss_amp_yoolink img{background-color: #A2C538}.heateor_sss_amp_youmob img{background-color: #3B599D}.heateor_sss_amp_gentlereader img{background-color: #46aecf}.heateor_sss_amp_threema img{background-color: #2A2A2A}.heateor_sss_amp_bluesky img{background-color:#0085ff}.heateor_sss_amp_threads img{background-color:#000}.heateor_sss_amp_raindrop img{background-color:#0b7ed0}.heateor_sss_amp_micro_blog img{background-color:#ff8800}

Site icon Insiderblog.hu

Autonóm mobilitás: a jövő közlekedése rendkívül összetett

Hatalmas mennyiségű adat keletkezik az autonóm járművek tesztelése során. A prototípus járművek adatai, valamint a már forgalomban lévő autók egyedi érzékelőiből származó információk segítségével a Continental folyamatosan képes fejleszteni a vezetést segítő funkciókat. A rögzített utazások mentésre kerülnek, majd az új szoftververziók segítségével virtuálisan újrajárhatók lesznek. Ennek eredményeként változatos MI (mesterséges intelligencia) modellek jönnek létre, amelyek olyan szinten kiterjedtek és részletesek, hogy bármilyen elképzelhető forgalmi helyzetet képesek kezelni. A Continental legfontosabb követelménye pedig az, hogy a rendszernek mindig és mindenhol működnie kell.
A kihívások egyike az, hogy azoknak az MI modelleknek, amelyek végső soron lehetővé teszik a jármű számára az esetleges közlekedési helyzetek megoldását, elég kompaktnak kell lenniük ahhoz, hogy elférjenek az autó egy kis chipjében. A technológiát pedig a hosszú élettartamra kell tervezni, mivel egy jármű életciklusa lényegesen hosszabb, mint egy okostelefoné.

A mesterséges intelligencia segít a kiértékelésben
A Continental mesterséges intelligenciára és hatalmas számítási teljesítményre támaszkodik az autonóm vezetéshez szükséges rendszerek kifejlesztése során. Az MI javítja a vezetéstámogató rendszerek teljesítményét, intelligensebbé és biztonságosabbá teszi a mobilitást, valamint felgyorsítja az autonóm vezetéshez szükséges rendszerek fejlesztését. Ennek érdekében a Continental és az NVIDIA egy, az NVIDIA DGX MI rendszeren alapuló nagyteljesítményű számítógépklasztert hozott létre az autonóm vezetés területén történő fejlesztések gyorsítása érdekében. A fejlett vezetést segítő rendszerek az MI-hez fordulnak, amikor döntéseket hoznak, vagy segítik a sofőrt, és természetesen akkor, amikor autonóm módon működnek.
A környezeti érzékelők, például a radarok és kamerák, nyers adatokat szolgáltatnak. Ezeket a nyers adatokat intelligens rendszerek valós időben dolgozzák fel, hogy egy átfogó modellt alkossanak a jármű környezetéről, és egy stratégiát dolgozzanak ki a vele való interakcióra. Végső soron a járművet úgy kell irányítani, hogy rendeltetésszerűen viselkedjen. Ahogyan azonban a rendszerek egyre összetettebbé válnak, a hagyományos szoftverfejlesztés és a klasszikus gépi tanulási módszerek kezdik elérni a határaikat. A mély tanulás és a szimulációk az AI megoldások fejlesztésének alapvető módszereivé válnak, annak érdekében, hogy meg lehessen érteni a környezet magas szintű komplexitását.

A mély tanuláshoz számítási teljesítményre van szükség
A mély tanulás során egy mesterséges neurálisháló lehetővé teszi a gép számára, hogy tapasztalat útján tanuljon, és az új információkat egyesítse a meglévő tudással. Ez lényegében az emberi agy tanulási folyamatát utánozza. A neurális hálók tanításhoz használt adatok főként a Continental tesztjármű-flottájából származnak. Ezek a járművek naponta körülbelül 15 ezer tesztkilométert tesznek meg és körülbelül 100 terabájt adatot gyűjtenek be – ami 50 ezer órányi filmnek felel meg. A rögzített adatokat fel lehet használni az új rendszerek tanítására is oly módon, hogy valódi tesztvezetések szimulálásához játsszák őket újra.

„Arra számítunk, hogy a neurális háló teljes tanításához szükséges idő hetekről órákra fog csökkenni” – mondja Lóránd Balázs, a Continental budapesti MI kompetencia központjának vezetője, aki csapataival együtt azon dolgozik, hogy az MI-alapú innovációkhoz fejlesszen infrastruktúrát és algoritmusokat. A Continental szuperszámítógépe a tanítások mellett a tesztvezetések szimulálását is lehetővé teszi. A továbbiakban a szimulációk csökkenthetik a fizikai flotta által generált adatok rögzítésének, tárolásának és elemzésének szükségességét, mivel az alkalmazandó tanítási szituációk azonnal létrehozhatók magában a rendszerben. Mindez növeli a fejlesztés sebességét, mivel a virtuális járművek annyi tesztkilométert képesek megtenni néhány óra alatt, amennyi egy valódi autónak több hetébe kerülne.

A rendszereknek mindig, mindenhol működniük kell
Nagyteljesítményű rendszerekre van szükség ahhoz, hogy meg lehessen birkózni az egyre növekvő adatmennyiséggel, valamint a jármű egyre változatosabb funkcióival és hálózataival. A hagyományosan elosztott járműarchitektúrák akár száz, vagy annál is több vezérlőegységükkel gyorsan elérik korlátaikat az összetettség és az innovatív funkciók irányítása szempontjából. Egy új és központosítottabb architektúrában a nagyteljesítményű központi feldolgozóegységek kiváltanak néhány hagyományosan elosztott motorverzérlő egységet, és az adatkezelés központi, „elektronikus agyaként” működnek. A jármű a dolgok internetének részévé válik, és az összetettség azáltal egyszerűsödik, hogy a hagyományos járműfunkciók egyetlen motorvezérlő egységben kerülnek összesítésre.
Ezen felül a központi feldolgozóegység a jármű élettartama alatt kezeli a vezeték nélküli szoftver és a firmware frissítéseket. Ez azt jelenti, hogy a jármű mindig naprakész állapotban maradhat, és bármikor telepíthetők új funkciók és alkalmazások.

Megosztás
Exit mobile version