a.heateor_sss_amp{padding:0 4px;}div.heateor_sss_horizontal_sharing a amp-img{display:inline-block;}.heateor_sss_amp_gab img{background-color:#25CC80}.heateor_sss_amp_parler img{background-color:#892E5E}.heateor_sss_amp_gettr img{background-color:#E50000}.heateor_sss_amp_instagram img{background-color:#624E47}.heateor_sss_amp_yummly img{background-color:#E16120}.heateor_sss_amp_youtube img{background-color:#ff0000}.heateor_sss_amp_teams img{background-color:#5059c9}.heateor_sss_amp_google_translate img{background-color:#528ff5}.heateor_sss_amp_x img{background-color:#2a2a2a}.heateor_sss_amp_rutube img{background-color:#14191f}.heateor_sss_amp_buffer img{background-color:#000}.heateor_sss_amp_delicious img{background-color:#53BEEE}.heateor_sss_amp_rss img{background-color:#e3702d}.heateor_sss_amp_facebook img{background-color:#0765FE}.heateor_sss_amp_digg img{background-color:#006094}.heateor_sss_amp_email img{background-color:#649A3F}.heateor_sss_amp_float_it img{background-color:#53BEEE}.heateor_sss_amp_linkedin img{background-color:#0077B5}.heateor_sss_amp_pinterest img{background-color:#CC2329}.heateor_sss_amp_print img{background-color:#FD6500}.heateor_sss_amp_reddit img{background-color:#FF5700}.heateor_sss_amp_mastodon img{background-color:#6364FF}.heateor_sss_amp_stocktwits img{background-color: #40576F}.heateor_sss_amp_mewe img{background-color:#007da1}.heateor_sss_amp_mix img{background-color:#ff8226}.heateor_sss_amp_tumblr img{background-color:#29435D}.heateor_sss_amp_twitter img{background-color:#55acee}.heateor_sss_amp_vkontakte img{background-color:#0077FF}.heateor_sss_amp_yahoo img{background-color:#8F03CC}.heateor_sss_amp_xing img{background-color:#00797D}.heateor_sss_amp_instagram img{background-color:#527FA4}.heateor_sss_amp_whatsapp img{background-color:#55EB4C}.heateor_sss_amp_aim img{background-color: #10ff00}.heateor_sss_amp_amazon_wish_list img{background-color: #ffe000}.heateor_sss_amp_aol_mail img{background-color: #2A2A2A}.heateor_sss_amp_app_net img{background-color: #5D5D5D}.heateor_sss_amp_balatarin img{background-color: #fff}.heateor_sss_amp_bibsonomy img{background-color: #000}.heateor_sss_amp_bitty_browser img{background-color: #EFEFEF}.heateor_sss_amp_blinklist img{background-color: #3D3C3B}.heateor_sss_amp_blogger_post img{background-color: #FDA352}.heateor_sss_amp_blogmarks img{background-color: #535353}.heateor_sss_amp_bookmarks_fr img{background-color: #E8EAD4}.heateor_sss_amp_box_net img{background-color: #1A74B0}.heateor_sss_amp_buddymarks img{background-color: #ffd400}.heateor_sss_amp_care2_news img{background-color: #6EB43F}.heateor_sss_amp_comment img{background-color: #444}.heateor_sss_amp_diary_ru img{background-color: #E8D8C6}.heateor_sss_amp_diaspora img{background-color: #2E3436}.heateor_sss_amp_dihitt img{background-color: #FF6300}.heateor_sss_amp_diigo img{background-color: #4A8BCA}.heateor_sss_amp_douban img{background-color: #497700}.heateor_sss_amp_draugiem img{background-color: #ffad66}.heateor_sss_amp_evernote img{background-color: #8BE056}.heateor_sss_amp_facebook_messenger img{background-color: #0084FF}.heateor_sss_amp_fark img{background-color: #555}.heateor_sss_amp_fintel img{background-color: #087515}.heateor_sss_amp_flipboard img{background-color: #CC0000}.heateor_sss_amp_folkd img{background-color: #0F70B2}.heateor_sss_amp_google_news img{background-color: #4285F4}.heateor_sss_amp_google_classroom img{background-color: #FFC112}.heateor_sss_amp_google_gmail img{background-color: #E5E5E5}.heateor_sss_amp_hacker_news img{background-color: #F60}.heateor_sss_amp_hatena img{background-color: #00A6DB}.heateor_sss_amp_instapaper img{background-color: #EDEDED}.heateor_sss_amp_jamespot img{background-color: #FF9E2C}.heateor_sss_amp_kakao img{background-color: #FCB700}.heateor_sss_amp_kik img{background-color: #2A2A2A}.heateor_sss_amp_kindle_it img{background-color: #2A2A2A}.heateor_sss_amp_known img{background-color: #fff101}.heateor_sss_amp_line img{background-color: #00C300}.heateor_sss_amp_livejournal img{background-color: #EDEDED}.heateor_sss_amp_mail_ru img{background-color: #356FAC}.heateor_sss_amp_mendeley img{background-color: #A70805}.heateor_sss_amp_meneame img{background-color: #FF7D12}.heateor_sss_amp_mixi img{background-color: #EDEDED}.heateor_sss_amp_myspace img{background-color: #2A2A2A}.heateor_sss_amp_netlog img{background-color: #2A2A2A}.heateor_sss_amp_netvouz img{background-color: #c0ff00}.heateor_sss_amp_newsvine img{background-color: #055D00}.heateor_sss_amp_nujij img{background-color: #D40000}.heateor_sss_amp_odnoklassniki img{background-color: #F2720C}.heateor_sss_amp_oknotizie img{background-color: #fdff88}.heateor_sss_amp_outlook_com img{background-color: #0072C6}.heateor_sss_amp_papaly img{background-color: #3AC0F6}.heateor_sss_amp_pinboard img{background-color: #1341DE}.heateor_sss_amp_plurk img{background-color: #CF682F}.heateor_sss_amp_pocket img{background-color: #ee4056}.heateor_sss_amp_polyvore img{background-color: #2A2A2A}.heateor_sss_amp_printfriendly img{background-color: #61D1D5}.heateor_sss_amp_protopage_bookmarks img{background-color: #413FFF}.heateor_sss_amp_pusha img{background-color: #0072B8}.heateor_sss_amp_qzone img{background-color: #2B82D9}.heateor_sss_amp_refind img{background-color: #1492ef}.heateor_sss_amp_rediff_mypage img{background-color: #D20000}.heateor_sss_amp_renren img{background-color: #005EAC}.heateor_sss_amp_segnalo img{background-color: #fdff88}.heateor_sss_amp_sina_weibo img{background-color: #ff0}.heateor_sss_amp_sitejot img{background-color: #ffc800}.heateor_sss_amp_skype img{background-color: #00AFF0}.heateor_sss_amp_sms img{background-color: #6ebe45}.heateor_sss_amp_slashdot img{background-color: #004242}.heateor_sss_amp_stumpedia img{background-color: #EDEDED}.heateor_sss_amp_svejo img{background-color: #fa7aa3}.heateor_sss_amp_symbaloo_feeds img{background-color: #6DA8F7}.heateor_sss_amp_telegram img{background-color: #3DA5f1}.heateor_sss_amp_trello img{background-color: #1189CE}.heateor_sss_amp_tuenti img{background-color: #0075C9}.heateor_sss_amp_twiddla img{background-color: #EDEDED}.heateor_sss_amp_typepad_post img{background-color: #2A2A2A}.heateor_sss_amp_viadeo img{background-color: #2A2A2A}.heateor_sss_amp_viber img{background-color: #8B628F}.heateor_sss_amp_webnews img{background-color: #CC2512}.heateor_sss_amp_wordpress img{background-color: #464646}.heateor_sss_amp_wykop img{background-color: #367DA9}.heateor_sss_amp_yahoo_mail img{background-color: #400090}.heateor_sss_amp_yahoo_messenger img{background-color: #400090}.heateor_sss_amp_youmob img{background-color: #3B599D}.heateor_sss_amp_gentlereader img{background-color: #46aecf}.heateor_sss_amp_threema img{background-color: #2A2A2A}.heateor_sss_amp_bluesky img{background-color:#0085ff}.heateor_sss_amp_threads img{background-color:#000}.heateor_sss_amp_raindrop img{background-color:#0b7ed0}.heateor_sss_amp_micro_blog img{background-color:#ff8800}

Site icon Insiderblog.hu

Szegedi kutatók egyre alaposabban vizsgálják az agysejtek működését

Napjainkban az élettudományi kutatások területén egyre nagyobb hangsúly helyeződik a sejtek egyedi tulajdonságainak feltérképezésére. Ennek azért van rendkívül nagy jelentősége, mert a különféle szervek és szövetek építőköveinek egyedi jellemzői fontos információkkal szolgálnak a hibás működések hátterének jobb megismeréséhez, illetve a kórfolyamatok mielőbbi felismeréséhez.

Az ELKH Szegedi Biológiai Kutatóközpont és a Szegedi Tudományegyetem kutatói a világon egyedülálló új módszert dolgoztak ki az agysejtek élettani működésének vizsgálatára. Saját fejlesztésű, mesterséges intelligenciával vezérelt, automatizált mikroszkóprendszerükkel képesek az élő szövetmintán belül bármilyen sejtet megtalálni, az előzetesen definiált jellemzőkkel rendelkező sejteket stimulálni, továbbá a válaszfolyamatok rögzítése révén biológiai információkat gyűjteni. A most kidolgozott módszer új távlatokat nyithat olyan világszerte elterjedt betegségek korai diagnosztikájában, illetve kórfolyamatainak megértésében, mint az Alzheimer-kór vagy a Parkinson-kór, ezzel is támogatva a hatékony terápiák kifejlesztését.

Az ELKH Szegedi Biológiai Kutatóközpont Biológiai képfeldolgozó és gépi tanulási munkacsoportja dr. Horváth Péter bioinformatikus vezetésével, valamint dr. Tamás Gábor neurobiológus professzor, a Szegedi Tudományegyetem Agykérgi Neuronhálózatok Kutatócsoportjának vezetője több éve dolgoznak együtt olyan rendszermikroszkópiai megoldásokon, amelyek új utakat nyitottak az egyedi sejtek vizsgálatában. Legújabb fejlesztésük az Autopatcher névre hallgató, mesterséges intelligencia segítségével működő elektrofiziológiai eljárás, amelyet a nagy presztízsű Nature Communications folyóiratban ismertettek február 10-én. A módszer több tekintetben is egyedülálló: a sejtvizsgálatok natív (festés vagy egyéb jelölés nélküli) agyszöveti mintákon történnek, gépi látás és mesterséges intelligencia felhasználásával. A mélytanulási algoritmusokra épülő, több ezer kép elemzése alapján kidolgozott szoftver a kamerakép alapján képes a mikroszkópba integrált mikropipetta helyének automatikus meghatározására, valamint a pipetta precíz mozgatására, és ennek révén a célsejtek automatikus felismerésére, illetve a célzott sejtek térbeli elmozdulásának észlelésére. A mesterséges intelligenciával vezérelt rendszer a vizsgálat céljától függően minden egyes célsejtet úgy választ ki, hogy a mérés sikeressége a lehető legnagyobb legyen. Az új technológia hozzájárul többek között új emberi sejttípusok felfedezéséhez vagy az agyi idegsejtek kapcsolatainak részletes megismeréséhez. Tamás Gábor professzor hasonló módszerrel fedezett fel korábban egy új emberi agysejttípust, így a most kifejlesztett új eljárás további nagy jelentőségű felfedezések reményét vetíti előre.

Gépi látás és automatizálás

A gépi tanulásra – vagyis mesterséges intelligenciára, illetve ennek egyik válfajára, az ún. mélytanulásra (deep learning) – épülő algoritmusok a mikroszkóprendszerbe épített kamera képei alapján vezérlik a mikropipettát. Ez az ún. gépi látás az emberi szemnél jóval precízebb, mikrométer pontosságú célzást biztosít. A gépi tanulás fázisa után a rendszer már az ismeretlen agyszöveti mintában is képes felfedezni a meghatározott sejttípusokat. A kiválasztott sejt membránjához irányított pipettába épített miniatűr elektróda egyenként képes ingerelni a sejteket. A finoman szabályozható stimulációra adott válaszreakció követésével fontos információk nyerhetők az élettani sejtaktivitásról anélkül, hogy a beavatkozás károsítaná a sejtet. Más esetekben a pipettába épített légnyomás-szabályozó rendszer segítségével akár a sejtmag és a citoplazma eltávolítására, ez alapján pedig molekuláris egysejt-analízisre is lehetőség van, ami például génszekvenálással összekapcsolva fontos genetikai információforrás lehet – magyarázza dr. Koós Krisztián, a kutatócsoport által publikált közlemény első szerzője. A kutatómunka és a mikroszkóprendszer fejlesztésének távlati alkalmazási lehetőségei szintén komoly potenciált hordoznak: új alapokra helyezheti például a gyógyszer-kipróbálásokat azáltal, hogy lehetővé teszi a sejtszintű gyógyszerhatások követését az élő szövetmintán. Újabb mikropipetta beépítésével a rendszer lehetőséget teremthet az idegsejtek közötti kapcsolatok újszerű vizsgálatára: a stimulációra adott sejtválasz karakterisztikájának meghatározására, az ingerületterjedés befolyásolásának elemzésére.

Jelölés nélküli, precíz sejtanalízis

A sejtek jelölés nélküli (label-free) vizsgálata a szegedi fejlesztés szintén fontos újítása. A sejttípusok azonosítására széles körben használt festési eljárások (pl. fluoreszcens festés) az élő szövetekben szükségképpen a sejtek pusztulását okozzák, így a sejtműködéssel kapcsolatos vizsgálatokat eleve kizárják. Léteznek ugyan másféle, kevésbé drasztikus sejtjelölési eljárások is (pl. génmódosításon alapuló fluoreszcens sejtjelölési módszerek), ezek alkalmazása azonban számos sejttípus esetében nem megoldható. A natív (festés nélküli) sejtvizsgálat tehát számos olyan hátrányt kiküszöböl, ami eddig gátat szabott az egyes sejtek vizsgálatának.

Az automatizált rendszermikroszkóp működését jól szemlélteti ez a videó.

Megosztás
Exit mobile version